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Abstract

Hysteresis in smart materials hinders their wider applicability in actuators. In this report we
investigate control of smart actuators through the example of controlling a commercially available
magnetostrictive actuator. At low frequencies, the magnetostriction can be related to the bulk
magnetization through a square law, thus control of the magnetization amounts to control of the
magnetostriction. The model we use is the low dimensional Jiles-Atherton model for ferromagnetic
hysteresis, which is a hybrid system. For illustrative purpose, we consider an infinite horizon control
problem. The approach we take features dynamic programming and Hamilton-Jacobi equations.
In particular, we show that the value function of the control problem satisfies a Hamilton-Jacobi-
Bellman equation (HJB) of some hybrid form in the viscosity sense. We further prove uniqueness
of solutions to the (HJB), and provide a numerical scheme to approximate the solution together
with a suboptimal controller synthesis method.



1 Introduction

Hysteresis in smart materials, e.g., magnetostrictives, piezoceramics, and shape memory alloys
(SMAs), hinders the wider applicability of such materials in actuators. Hysteresis models can be
classified into physics based models and phenomenological models. An example of physics based
model is the Jiles-Atherton model for ferromagnetic hysteresis[9], where hysteresis is considered to
arise from pinning of domain walls on defect sites. The most popular phenomenological hysteresis
model used in control of smart actuators has been the Preisach model[1, 6, 7].

A fundamental idea in coping with hysteresis is inverse compensation[5, 11, 13]. Inverse com-
pensation suffers from a couple of drawbacks, like no closed form and implementation difficulties.
In this report, we will investigate the control of hysteretic actuator from a different perspective. We
will study a special class of hysteretic systems which have low dimensional mathematical models.

To be specific, we will focus on control of a commercially available magnetostrictive actuator.
At low frequencies, the magnetostriction can be related to the bulk magnetization through a square
law, thus control of magnetostriction is equivalently control of bulk magnetization. We will employ
the low dimensional bulk magnetization model[14] for the magnetization hysteresis. The model is a
hybrid dynamical system, whose switching depends on both the state and the control. Conclusions
and future work are provided in Section 6.

This report is organized as follows. In Section 2 we present the hysteresis model and explore
its properties. In Section 3 we formulate an optimal control problem, and show the value function
satisfies a Hamilton-Jacobi-Bellman equation (HJB) of some hybrid form in the viscosity sense.
In Sectin 4, We prove that (HJB) admits a unique solution in the class of continuous functions
to which the value function belongs. We describe some discrete approximation schemes to (HJB)
in Section 5. This establishes the existence of a solution to (HJB) as well as provides a way for
suboptimal control synthesis. Finally future work along the line of this report is provided in Section
6.

2 Mathematical Model of Hysteresis

2.1 The bulk ferromagnetic hysteresis model

Jiles and Atherton proposed a low dimensional model for ferromagnetic hysteresis, based upon the
quantification of energy losses due to domain wall intersections with inclusions or pinning sites
within the material[9].A modification of the Jiles-Atherton model was made by Venkataraman
and Krishnaprasad with rigorous use of energy balancing principle[15, 14], and they called it the
bulk ferromagnetic hysteresis model. Also based on the energy balancing principle, they derived
a bulk magnetostrictive hysteresis model[16, 14]. At low frequencies, the magnetostriction can be
related to the bulk magnetization through a square law[14], thus control of the bulk magnetization
amounts to control of the magnetostriction. In this report, we will study optimal control of the
bulk magnetization exclusively to highlight the methodology of hysteresis control. Extension to
control of magnetostriction at high frequencies can be done following the ideas in [12].
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We will use the bulk ferromagnetic hysteresis model [15, 14] in this report, which has a slightly
different form from the Jiles-Atherton model. We now briefly outline the model. The bulk magne-
tization M is comprised of a reversible component Mrev and an irreversible component Mirr, and
Mrev is related to Mirr and the anhysteretic magnetization Man by:

Mrev = c(Man −Mirr), (1)

where c is called the reversibility coefficient, and Man is given below.

For an input field H and a bulk magnetization M , we define He = H + αM to be the effective
field, where α is a mean field parameter representing inter-domain coupling. Through thermody-
namic considerations, the anhysteretic magnetization Man can be expressed as

Man(He) = Ms(coth(
He

a
)− a

He
)

= MsL(z), (2)

where L(·) is the Langevin function, L(z) = coth(z) − 1
z , with z = He

a , Ms is the saturation
magnetization of the material and a is a parameter characterizing the shape of Man curve. Energy
balancing yields the expressions for Mirr:

dMirr

dH
= δ̃

µ0(Man −M)
kδ(1 − c)

dHe

dH
, (3)

where µ0 is the permeability of vacuum, k is a measure for the average energy required to break a
pinning site, δ = sign(Ḣ), and

δ̃ =




0, dH < 0 and M < Man

0, dH > 0 and M > Man

1, else
.

The function δ is defined to guarantee that pinning always opposes changes in magnetization, and
δ̃ is defined to guarantee that the incremental susceptibility is non-negative. Since by (1),

M = Mirr +Mrev = (1− c)Mirr + cMan, (4)

taking derivative with respect to H at both sides of ( 4), we have

dM

dH
= (1− c)

dMirr

dH
+ c

dMan

dH
.

From (2) and (3), we get after some manipulations,

dM

dH
=

ckδMs
µ0a

∂L(z)
∂z + δ̃(Man −M)

kδ
µ0

(1− αcMs
a

∂L(z)
∂z )− δ̃α(Man −M)

, (5)

where
∂L(z)
∂z

=
1
z2
− csch2(z). (6)
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Equation (5) describes a switched nonlinear system. In particular, letting

f1(H,M) = c
Ms

∂L(z)
∂z

a− αcMs
∂L(z)

∂z

,

f2(H,M) =
ckMs

∂L(z)
∂z − µ0a(Man −M)

k(a− αcMs
∂L(z)

∂z ) + µ0αa(Man −M)
,

f3(H,M) =
ckMs

∂L(z)
∂z + µ0a(Man −M)

k(a− αcMs
∂L(z)

∂z )− µ0αa(Man −M)
,

and u = Ḣ, we can rewrite (5) as (
Ḣ

Ṁ

)
=

(
1

fi(H,M)

)
u, (7)

with each fi smooth in H and M , and the switching rule is:

i =




1, u ≤ 0, M ≤Man(He) or u ≥ 0, M ≥Man(He)
2, u ≤ 0, M ≥Man(He)
3, u ≥ 0, M ≤Man(He)

.

Note the switching depends on both (sign of) u and the state variables H,M . We may represent
model (7) in a more compact way. Let Γ={(H,M) : M = Man(He)},

Ω1={(H,M) : M < Man(He)}, Ω2={(H,M) : M > Man(He)},
and denote Ωi = Ωi ∪ Γ, i = 1, 2. Letting x = (H,M), we can define

f+(x) =




(
1

f1(x)

)
if x ∈ Ω2(

1
f3(x)

)
if x ∈ Ω1

, and f−(x) =




(
1

f1(x)

)
if x ∈ Ω1(

1
f2(x)

)
if x ∈ Ω2

.

Since fi, 1 ≤ i ≤ 3, coincide on Γ, f+ and f− are well defined and continuous. We then introduce
the discrete control set D = {1, 2} and the continuous control sets

U+ = {u : u ≤ 0}, U− = {u : u ≥ 0}.
A control action includes both the discrete mode control d ∈ D and the continuous control u. Now
the model (7) can be described as: at any x ∈ R

2, if one chooses d = 1, then u must be picked from
U+, and the dynamics is governed by:

ẋ = f+(x)u. (8)

Similarly, if d = 2 is chosen, then u must be picked from U−, and the dynamics is:

ẋ = f−(x)u. (9)

The state-dependent switching has now been incorporated into the definitions of f+, f−. Note the
model(8),(9) is a Duhem hysteresis model [17]. The Duhem model characterizes a class of rate-
independent hysteresis models with input v(·) and output ω(·), with dynamics depending on the
sign of v̇. To be precise,

ω̇ = g1(v, ω)(v̇)+ − g2(v, ω)(v̇)−, (10)
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where (v̇)+ = max{0, v̇} and (v̇)− = max{0,−v̇}. Denoting u = v̇, we can write (10) as(
v̇
ω̇

)
=

(
1

gi(v, ω)

)
u, (11)

with the switching rule:

i =
{

1, u ≤ 0,
2, u ≥ 0,

.

Remark: Smith and Hom [10] proposed a model for ferroelectric hysteresis analogous to the
Jiles-Atherton model for ferromagnetic materials. The model of Smith and Hom carries the same
structure as that of (7), thus the approach presented in this report is fully applicable to control of
actuators made of ferroelectric materials. This, in some sense, justifies the title of the report.

In the next two subsections, we will derive some properties of the model (7), which will be used
in the analysis later.

2.2 Boundness of fi

Lemma 1: L(z) satisfies:

0 <
∂L(z)
∂z

≤ 1
3
, (12)

|L(z)| ≤ 1. (13)

The proof of Lemma 1 can be found in Appendix A.

Proposition 2:If the parameters satisfy:

T1 := a− αcMs

3
> 0, (14)

T2 := k(a− αcMs

3
)− 2µ0αaMs > 0, (15)

then 0 < fi ≤ Cf , i = 1, 2, 3 for some constant Cf > 0.

Proof. By (12) and (14)

0 < T1 = a− αcMs

3
≤ a− αcMs

∂L(z)
∂z

< a.

We rewrite f1 as

f1 = − 1
α

+
a

α(a− αcMs
∂L(z)

∂z )
,

and note that it is a nondecreasing function of ∂L(z)
∂z . Since

f1 = 0 when ∂L(z)
∂z = 0,

f1 =
cMs

3a− αcMs
=: C1 when ∂L(z)

∂z = 1
3 ,
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we get
0 < f1 ≤ C1.

The function f2 can be written as

f2 = − 1
α

+
ka

α

1

k(a− αcMs
∂L(z)
∂z

) + µ0αa(Man −M)︸ ︷︷ ︸
=:T

From the model (7), when f2 is selected, Man −M ≤ 0. Since magnitudes of both Man and M
must be less than Ms, Man −M ≥ −2Ms. These facts together with (12) yield

0 < T2 ≤ T ≤ ka.

Therefore
0 < f2 ≤ ka− T2

αT2
=: C2.

Similarly we can show 0 < f3 < C2. Picking Cf = max{C1, C2}, we have 0 < fi ≤ Cf for
i = 1, 2, 3. �

Remark: Conditions (14) and (15) are satisfied for typical parameters. For example, if we take
the identified parameters in [14], α = 1.9 × 10−4, a = 190, k = 48 Tesla, c = 0.3, Ms = 7.9 × 105

Amp/meter and µ0 = 4π × 10−7 Henry/meter, we calculate T1 = 174.99, T2 = 8.40 × 103.

2.3 Lipshitz continuity of the model

Proposition 3: f+ and f− are Lipshitz continuous with Lipshitz constant L. Define f̃+(x, u) =
f+(x)u, f̃−(x, u) = f−(x)u. If U+ = {u : 0 ≤ u ≤ uc} and U− = {u : −uc ≤ u ≤ 0} for some
uc > 0, then ∀u ∈ U+(u ∈ U−, resp.), f̃+(x, u) (f̃−(x, u), resp.) is Lipshitz continuous with respect
to x with Lipshitz constant L0 = Luc.

Remarks:

• The physical interpretation for |u| ≤ uc is the operating bandwidth constraint on the magne-
tostrictive actuator.

• In the rest of the report, we will use f+(x)u (f−(x)u, resp.) and f̃+(x, u) (f̃−(x, u), resp.)
interchangeably.

Proof. We first prove f− is Lipshitz continuous with Lipshitz constant L. We discuss three
cases:

• Case I: Both x1, x2 ∈ Ω1. In this case, mode 1 is active, and thus

∂f−(x)
∂x

=
(

0 0
∂f1(H,M)

∂H
∂f1(H,M)

∂M

)
. (16)
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It can be shown, after some manipulations, that |∂f1(H,M)
∂H | ≤ C1, |∂f1(H,M)

∂M | ≤ αC1 for some
C1 > 0. Therefore |∂f−(x)

∂x | ≤ L1 for some L1 > 0, and the following holds:

|f−(x1)− f−(x2)| ≤ L1|x1 − x2|.

• Case II: Both x1, x2 ∈ Ω2. In this case, mode 2 is active. Following similar steps as in Case
I, we can show |∂f−(x)

∂x | ≤ C2 for some L2 > 0 and therefore

|f−(x1)− f−(x2)| ≤ L2|x1 − x2|.

• Case III: x1 ∈ Ω1, x2 ∈ Ω2. Then there exist x0 ∈ Γ, such that the line segment connecting
x1 and x2 intersects Γ at x0. We express x0 = θx1 + (1− θ)x2 with 0 ≤ θ ≤ 1. Thus

|f−(x1)− f−(x2)| = |f−(x1)− f−(x0) + f−(x0)− f−(x2)|
≤ L1|x1 − x0|+ L2|x0 − x2|
= L1(1− θ)|x1 − x2|+ L2θ|x1 − x2|
≤ L−|x1 − x2|,

with L− = max{L1, L2}.

Following exactly the same arguments, we can show ,

|f+(x1)− f+(x2)| ≤ L+|x1 − x2|, ∀x1, x2.

We conclude the first part by taking L = max{L−, L+}. The rest of the proposition follows trivially.
�

3 Optimal Control: (HJB) and Viscosity Solutions

Dynamic Programming Principle (DPP) is one of the most important approaches in optimal control.
When the value function is smooth, we can derive the Hamilton-Jacobi-Bellman equation (HJB),
and in many cases, solving HJB amounts to solving the optimal control problem. The value
function however, in general, is not smooth even for smooth systems, not to mention for a hybrid
system, like that in our model. Crandall and Lions[4] introduced the notion of viscosity solutions
to Hamilton-Jacobi equations. This turned out to be a very useful concept for optimal control since
value functions of many optimal control problems do satisfy the HJB in the viscosity sense. And
under mild assumptions, uniqueness and existence results for viscosity solutions hold.

We will explore this approach for control of smart actuators. This report is aimed at providing
some flavors of this approach through the example of infinite-time horizon optimal control problem.
We will study the properties of the value function, derive the Dynamic Programming Principle and
show the value function indeed satisfies (HJB) of a special form.
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3.1 Optimal control problem

For ease of presentation, we rewrite the model (8),(9) as

ẋ = f̃(x, u, d) =
{
f̃+(x, u) if d = 1, u ∈ U+

f̃−(x, u) if d = 2, u ∈ U− . (17)

We require u(·) to be measurable. This together with Proposition 3 guarantees that, for any
initial condition x and any admissible control pair α(·) := {d(·), u(·)}, (17) has a unique solution
x(·)(the dependence on x and α(·) is suppressed when no confusion arises).

Define the cost functional with initial condition x and control α(·) as

J(x, α(·)) =
∫ ∞

0
l(x(t), u(t))e−λtdt, (18)

with λ ≥ 0. The optimal control problem is: given initial condition x, find

V (x) = inf
α(·)

J(x, α(·)), (19)

and if V (x) is achievable, find the optimal control α∗(·).

We make the following assumptions about l(·, ·):

• (A1): l(x, u) continuous in x and u, l(x, u) ≥ 0, ∀x, u;
• (A2): l(0, 0) = 0;

• (A3): |l(x1, u)− l(x2, u)| ≤ Cl(1 + |x1|+ |x2|)|x1 − x2|, ∀u for some Cl > 0.

Note (A3) includes the case of quadratic cost.

3.2 Properties of the value function

Proposition 4 [Local Boundness]: Under assumptions (A1) − (A3), ∀λ > 0, V (·) is locally
bounded, i.e., ∀R ≥ 0,∃CR ≥ 0, such that |V (x)| ≤ CR ∀x ∈ B(0, R) := {x : |x| ≤ R}.

Proof. First note since l(·, ·) is nonnegative, V (x) ≥ 0 ∀x. Take u(t) ≡ 0,then x(t) ≡ x. Let
α(t) = {d(t), u(t)} where d(t) ≡ 1. We have

V (x) ≤ J(x, α(·)) =
∫ ∞

0
l(x, 0)e−λtdt

=
l(x, 0)
λ

.

By (A2) and (A3), l(x, 0) ≤ Cl(1 +R)R, and the proof is complete with CR := Cl(1+R)R
λ . �
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Proposition 5 [Locally Lipshitz Continuity]: Under assumptions (A1) − (A3), ∀λ > 2L0

with L0 as defined in Proposition 3, V (·) is locally Lipshitz, i.e., ∀R ≥ 0,∃LR ≥ 0, such that
|V (x1)− V (x2)| ≤ LR|x1 − x2| ∀x1, x2 ∈ B(0, R).

Before we prove Proposition 5, we first prove a lemma regarding the solution to (17).

Lemma 6: Let x1(·), x2(·) be solutions to (17) under some admissible control α(·) = {d(·), u(·)}
with initial condition x1, x2 respectively. Then

1.
|x1(t)− x2(t)| ≤ eL0t|x1 − x2|; ; (20)

2.
|x1(t)| ≤ |x1|eL0t +

C

L0
(eL0t − 1), (21)

where C = maxd |f̃(0, uc, d)|.

Proof. 1. Denote the sequence of mode switching times as {ti, i = 0, 1, · · · } with t0 = 0, and
the mode during [ti, ti+1) as di. Then ∀t ∈ [0, t1),

d

dt
|x1(t)− x2(t)|2 = 2(x1(t)− x2(t)) · (f̃(x1(t), u(t), d0)− f̃(x2(t), u(t), d0)

≤ 2L0|x1(t)− x2(t)|2,

where the inequality comes from Proposition 3. Integrating both sides from 0 to t,

|x1(t)− x2(t)|2 ≤ |x1 − x2|2 + 2L0

∫ t

0
|x1(s)− x2(s)|2ds,

and by Gronwall inequality,
|x1(t)− x2(t)|2 ≤ |x1 − x2|2e2L0t,

from which (20) follows. Now ∀t ∈ [t1, t2), taking x1(t1), x2(t1) as initial conditions, we follow the
above procedures and get

|x1(t)− x2(t)| ≤ |x1(t1)− x2(t1)|eL0(t−t1)

≤ |x1 − x2|eL0(t−t1)eL0(t1−0)

= |x1 − x2|eL0t.

Using the same argument successively, we can show that (20) holds ∀t ≥ 0.

2. ∀x1(t) 6= 0, we can write

|x1(t)| d
dt
|x1(t)| =

1
2
d

dt
|x1(t)|2 = x1(t) · f̃(x1(t), u(t), d(t))

= x1(t) · (f̃(0, u(t), d(t)) + f̃(x1(t), u(t), d(t)) − f̃(0, u(t), d(t)))
≤ C|x1(t)|+ L0|x1(t)|2,
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from which we obtain
d

dt
|x1(t)| ≤ C + L0|x1(t)|.

Integrating it from 0 to t and then apply Gronwall inequality, we have (21). �

Proof of Proposition 5. For ε > 0, let αε(·) = {dε(·), uε(·)} be ε−optimal for x2, i.e.,

V (x2) ≥ J(x2, α
ε(·)) − ε.

Since V (x1) ≤ J(x1, α
ε(·)), we have

V (x1)− V (x2) ≤ J(x1, α
ε(·))− J(x2, α

ε(·))
≤

∫ ∞

0
e−λt|l(x1(t), uε(t)) − l(x2(t), uε(t))|dt + ε

≤
∫ ∞

0
e−λtCl(1 + |x1(t)|+ |x2(t)|)|x1(t)− x2(t)|dt + ε,

where the last inequality is from (A3). Using Lemma 6,

V (x1)− V (x2) ≤ Cl|x1 − x2|
∫ ∞

0
((

2C
L0

+ |x1|+ |x2|)e(2L0−λ)t

+(1− 2C
L0

)e(L0−λ)t)dt + ε

= (C0 +
(|x1|+ |x2|)
λ− 2L0

)Cl|x1 − x2|+ ε

≤ LR|x1 − x2|+ ε,

where C0 is a constant and LR := (C0 + 2R
λ−2L0

)Cl. Since ε is arbitrary, we have

V (x1)− V (x2) ≤ LR|x1 − x2|.

But x1 and x2 are symmetric, we must also have

V (x1)− V (x2) ≤ LR|x1 − x2|.

Therefore
|V (x1)− V (x2)| ≤ LR|x1 − x2|.

�

Remark: Proposition 2 can be exploited to yield sharper estimates for |x1(t) − x2(t)| and
|x1(t)|, as shown in the next lemma. This might be used to weaken the assumptions in Proposition
5.

Lemma 7: Let x1(·), x2(·) be solutions to (17) under some admissible control α(·) = {d(·), u(·)}
with initial condition x1, x2 respectively. Then

1.
|x1(t)− x2(t)| ≤ |x1 − x2|+ 2L0t; (22)

9



2.
|x1(t)− x1| ≤ C0t, (23)

where

C0 = uc

∣∣∣∣ 1
Cf

∣∣∣∣ .
Proof.1. For x1(t) 6= x2(t),

|x1(t)− x2(t)| d
dt
|x1(t)− x2(t)|

=
1
2
d

dt
|x1(t)− x2(t)|2

= (x1(t)− x2(t)) · (f̃(x1(t), u(t), d(t)) − f̃(x2(t), u(t), d(t)))
≤ 2L0|x1(t)− x2(t)|,

where the last inequality is from Proposition 3. Therefore we have

d

dt
|x1(t)− x2(t)| ≤ 2L0,

from which (22) follows.

2. (23) is a straightforward consequence of Proposition 2. �

3.3 Dynamic programming principle

Proposition 8 [Dynamic Programming Principle]: Assume (A1) − (A3), λ < 2L0. Denote
any admissible control pair {d(·), u(·)} as α(·). The following is true:

V (x) = inf
α(·)
{
∫ t

0
e−λsl(x(s), u(s))ds + e−λtV (x(t))}, ∀t ≥ 0. (24)

Proof. Denote the right hand side of (24) as W (x). Note under the assumptions, ∀t ≥ 0, V (x)
and W (x) are locally bounded, i.e., for any bounded x, V (x) <∞,W (x) <∞. We will first show
V (x) ≥W (x) and then the converse.

1. For ε > 0, let αε(·) be ε−optimal, i.e.,

J(x, αε(·)) ≤ V (x) + ε.

Now

J(x, αε(·)) =
∫ t

0
e−λsl(x(s), uε(s))ds +

∫ ∞

t
e−λsl(x(s), uε(s))ds

=
∫ t

0
e−λsl(x(s), uε(s))ds + e−λt

∫ ∞

0
e−λsl(x(s+ t), uε(s + t))ds.

10



Let x(s) = x(s+ t), α(s) = αε(s+ t), we have∫ ∞

0
e−λsl(x(s+ t), uε(s+ t))ds =

∫ ∞

0
e−λsl(x(s), u(s))ds

= J(x(t), u(·)) ≥ V (x(t)).

Therefore

V (x) + ε ≥W (x),

and since ε is arbitrary,V (x) ≥W (x).

2. For ε > 0, pick α0(·) = {d0(·), u0(·)} such that∫ t

0
e−λsl(x(s), u0(s))ds+ e−λtV (x(t)) ≤W (x) + ε.

Then pick α1(·) = {d1(·), u1(·)} such that

J(x(t), α1(·)) ≤ V (x(t)) + ε.

Now define α(·) = {d(·), u(·)} by

α(s) =
{
α0(s), s ≤ t
α1(s− t), s > t

.

We then have

W (x) + ε ≥
∫ t

0
e−λsl(x(s), u0(s))ds + e−λt(

∫ ∞

t
e−λ(s)l(x(s), u1(s))ds− ε)

≥
∫ ∞

0
e−λsl(x(s), u(s))ds − ε

= J(x, α(·)) − ε ≥ V (x)− ε,

which implies
W (x) ≥ V (x)− 2ε.

Since ε is arbitrary, we have W (x) ≥ V (x). �

3.4 Hamilton-Jacobi-Bellman equation

In this subsection, we will show that the value function V (·) satisfies the HJB equation in the
viscosity sense. Viscosity solutions to Hamilton-Jacobi equations were first introduced by Crandall
and Lions[4]. Here we use one of the three equivalent definitions of viscosity solutions[3]:

Definition[Viscosity Solution]: Let W be a continuous function from an open set O ∈ R
n

into R and let DW denote the gradient of W (when W is differentiable). We call W a viscosity
solution to a nonlinear first order partial differential equation

F (x,W (x),DW (x)) = 0, (25)

provided ∀φ ∈ C1(O),

11



• (Viscosity Subsolution ) if W − φ attains a local maximum at x0 ∈ O, then

F (x0,W (x0),Dφ(x0)) ≤ 0.

• (Viscosity Supersolution ) if W − φ attains a local minimum at x0 ∈ O, then

F (x0,W (x0),Dφ(x0)) ≥ 0.

Viscosity solutions have a couple of nice properties[3, 4]. We mention one elementary property
here(consistency with the notion of classical solution), that is: 1) any classical solution to (25) is a
viscosity solution; 2) the viscosity solution satisfies (25) in the classical sense at any point where it
is differentiable.

We now present the first main result of this report: the value function V (·) satisfies a Hamilton-
Jacobi-Bellman equation of a special form in the viscosity sense.

Theorem 9 [Hamilton-Jacobi-Bellman Equation] Assuming (A1) − (A3), λ > 2L0, the
value function V (x) is a viscosity solution to the following equation:

(HJB) λW (x) + max{ sup
u∈U+

{−uf+(x) ·DW (x)− l(x, u)}, sup
u∈U−

{−uf−(x) ·DW (x)− l(x, u)}} = 0.

(26)

Remark: we may replace sup in (26) by max since U− and U+ are compact.

Proof. 1. We first show V (·) is a viscosity subsolution. For any u ∈ U−, take α(·) = {d(·), u(·)}
with d(t) = 2, u(t) = u ∀t. From (24), for any t ≥ 0

V (x) ≤
∫ t

0
l(x(s), u)e−λsds+ e−λtV (x(t)),

which we rewrite as

V (x(t)) − V (x) +
∫ t

0
l(x(s), u)e−λsds+ V (x(t))(e−λt − 1) ≥ 0. (27)

Now suppose that V − φ with φ ∈ C1(R2) has a local maximum at x, then since V is continuous,

V (x(t)) − φ(x(t)) ≤ V (x)− φ(x),

for t sufficiently small. This together with (27) implies

φ(x(t)) − φ(x) +
∫ t

0
l(x(s), u)e−λsds+ V (x(t))(e−λt − 1) ≥ 0. (28)

Divide (28) by t and let t→ 0, we obtan

uf−(x) ·Dφ(x) + l(x, u) − λV (x) ≥ 0, ∀u ∈ U−,
i.e.,

λV (x) + sup
u∈U−

{−uf−(x) ·Dφ(x)− l(x, u)} ≤ 0.
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Similarly, we have

λV (x) + sup
u∈U+

{−uf+(x) ·Dφ(x)− l(x, u)} ≤ 0.

Therefore

λV (x) + max{ sup
u∈U−

{−uf−(x) ·Dφ(x)− l(x, u)},

sup
u∈U+

{−uf+(x) ·Dφ(x)− l(x, u)}} ≤ 0. (29)

2. The proof of supersolution is much more technically involved. We mainly follow the approach
in Bardi and Capuzzo-Dolcetta[2].

For t > 0, ε > 0, we can find α(·) = {d(·), u(·)}, such that

V (x) ≥
∫ t

0
l(x(s), u(s))e−λsds+ e−λtV (x(t))− tε. (30)

Since by (A3),

|l(x(s), u(s)) − l(x, u(s))| ≤ Cl(1 + |x(s)|+ |x|)|x(s) − x|,

and by Lemma 7,

|x(s)− x| ≤ C0s,

we then have ∫ t

0
l(x(s), u(s))e−λsds =

∫ t

0
l(x, u(s))e−λsds+ o(t).

And by (30),

V (x) ≥
∫ t

0
l(x, u(s))e−λsds+ e−λtV (x(t))− tε+ o(t). (31)

Now suppose that V − φ with φ ∈ C1(R2) has a local minimum at x, then since V is continuous,

V (x(t)) − φ(x(t)) ≥ V (x)− φ(x),

for t sufficiently small. This and (31) imply

φ(x)− φ(x(t)) ≥
∫ t

0
l(x, u(s))e−λsds− (1− e−λt)V (x(t))− tε+ o(t). (32)

We also have

φ(x) − φ(x(t)) = −
∫ t

0
Dφ(x(s)) · f̃(x(s), u(s), d(s))ds

= −
∫ t

0
Dφ(x) · f̃(x, u(s), d(s))ds + o(t), (33)

13



since

|f̃(x(s), u(s), d(s)) − f̃(x, u(s), d(s))| ≤ L0|x(s)− x|
≤ C0L0s,

and

|Dφ(x(s)) −Dφ(x)| ≤ ωDφ(|x(s)− x|),

where ωDφ(·) is the modulus of continuity of Dφ.

Combining (32) and (33) gives rise to
∫ t

0
(−Dφ(x) · f̃(x, u(s), d(s)) − l(x, u(s)))ds +

∫ t

0
(1− e−λs)l(x, u(s))ds

+(1− e−λt)V (x(t)) ≥ −tε+ o(t). (34)

Since U− ∪ U+ is compact, l(x, u(s)) ≤Mx, ∀s ≥ 0, for some constant Mx depending on x. Thus
∫ t

0
(1− e−λs)l(x, u(s))ds = o(t).

Since

−Dφ(x) · f̃(x, u(s), d(s)) − l(x, u(s)) ≤ max{ sup
u∈U−

{−uf−(x) ·Dφ(x)− l(x, u)},

sup
u∈U+

{−uf+(x) ·Dφ(x)− l(x, u)}} =: Q(x,Dφ(x)),

we obtain from (34)
∫ t

0
Q(x,Dφ(x))ds + (1− e−λt)V (x(t)) ≥ −tε+ o(t). (35)

By dividing (35) by t and letting t→ 0,

λV (x) +Q(x,Dφ(x)) ≥ −ε.

Since ε is arbitrary, we get

λV (x) + max{ sup
u∈U−

{−uf−(x) ·Dφ(x)− l(x, u)},

sup
u∈U+

{−uf+(x) ·Dφ(x)− l(x, u)}} ≥ 0. (36)

Combining (29) and (36) yields the desired result.�
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4 Uniqueness of (HJB)

We would like to characterize the value function V (·) as a unique solution to (HJB). The uniqueness
result basically comes from Theorem 1.5 in [8]. In [8], the author gave only a sketch of proof. Here
for completeness, we will provide the full proof.

Before stating the theorem, we need first identify structural properties of our (HJB). We rewrite
(26) as:

λW (x) +H(x,DW (x)) = 0, (37)

where
H(x, p) = max{ sup

u∈U−
{−p · f̃−(x, u)− l(x, u)}, sup

u∈U+

{−p · f̃+(x, u)− l(x, u)}}.

Proposition 10:Assume (A3), H(x, p) satisfies the following:

|H(x1, p)−H(x2, p)| ≤ CR(1 + |p|)|x1 − x2|, ∀x1, x2 ∈ B(0, R), ∀p (38)
|H(x, p1)−H(x, p2)| ≤ C0|p1 − p2|,∀x, ∀p1, p2 (39)

for some CR > 0, C0 > 0, with CR dependent on R.

Proof. 1. Without loss of generality, suppose u1 ∈ U− attains the maximum in H(x1, p). Since
H(x2, p) ≥ −p · f̃−(x2, u1)− l(x2, u1),

H(x1, p)−H(x2, p) ≤ −p · f̃−(x1, u1)− l(x1, u1) + p · f̃−(x2, u1) + l(x2, u1)
≤ |p|L0|x1 − x2|+ Cl(1 + |x1|+ |x2|)|x1 − x2|
≤ CR(1 + |p|)|x1 − x2|,

where CR is a constant dependent on R. By symmetry, we have H(x2, p) − H(x1, p) ≤ CR(1 +
|p|)|x1 − x2|.

2. Without loss of generality, suppose u1 ∈ U− attains the maximum in H(x, p1). Since
H(x, p2) ≥ −p2 · f̃−(x, u1)− l(x, u1),

H(x, p1)−H(x, p2) ≤ −p1 · f̃−(x, u1)− l(x, u1) + p2 · f̃−(x, u1) + l(x, u1)
= −f̃−(x, u1) · (p1 − p2)
≤ C0|p1 − p2|,

where the last inequality is from boundness of f̃−. Again by symmetry, we have the other half of
the inequality. �

Remark: As we have seen above, despite the hybrid structure of our physical model, H(x, p)
enjoys nice structural properties, which enables us to prove the uniqueness result.
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From Proposition 5, we know that the value function V (·) of our optimal control problem
belongs to the following class

P(R2) = {W (·) : |W (x1)−W (x2)| ≤ C(1 +R)|x1 − x2|,∀x1, x2 ∈ B(0, R)}.

Note W (·) ∈ P(R2) implies

W (·) ∈ Q(R2) = {W (·) ∈ C(R2) : sup
R

2

|W (x)|
1 + |W (x)|2 <∞}.

The following theorem is adapted from Theorem 1.5 in [8].

Theorem 11: Assuming (A1)− (A3), λ > 2L0, if (37) has a viscosity solution in P(R2), it is
unique.

Proof. Without loss of generality, we take λ = 1. Let W (·), V (·) ∈P(R2) be viscosity solutions
to (37). For ε > 0, α > 0,m > 2, define

Φ(x, y) = W (x)− V (y)− 1
ε
|x− y|2 − α(< x >m + < y >m)

where
< x >:= (1 + |x|2) 1

2 .

Since W (·), V (·) ∈Q(R2),
lim

|x|+|y|→∞
Φ(x, y) = −∞.

And since Φ(·, ·) is continuous, there exists (x0, y0) such that Φ attains the global maximum. First
we need to get an estimate for |x0|, |y0| and |x0 − y0|.

From Φ(0, 0) ≤ Φ(x0, y0),

W (0)− V (0) − 2α ≤W (x0)− V (y0)− 1
ε
|x0 − y0|2 − α(< x0 >

m + < y0 >
m).

W (·), V (·) ∈Q(R2) leads to

< x0 >
m + < y0 >

m≤ Cα(1+ < x0 >
2 + < y0 >

2),

where Cα is a constant independent of ε (but dependent on α). Since m > 2, there exists Rα > 0
(independent of ε), such that

|x0| ≤ Rα, |y0| ≤ Rα.

From Φ(x0, x0) + Φ(y0, y0) ≤ 2Φ(x0, y0),

1
ε
|x0 − y0|2 ≤ W (x0)−W (y0) + V (x0)− V (y0)

≤ C(1 +Rα)|x0 − y0|,

where the last inequality comes from W (·), V (·) ∈P(R2). Therefore we get

|x0 − y0| ≤ εC ′
α, (40)
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with C ′
α depending on α only.

Now define

φ(x) = V (y0) +
1
ε
|x− y0|2 + α(< x >m + < y0 >

m),

ψ(y) = W (x0)− 1
ε
|x0 − y|2 − α(< x >m + < y0 >

m).

Since (W − φ)(·) achieves maximum at x0,

λW (x0) +H(x0,Dφ(x0)) ≤ 0,

i.e.,

W (x0) ≤ −H(x0,
2
ε
(x0 − y0) + αm < x0 >

m−2 x0). (41)

Similarly, since (V − φ)(·) achieves minimum at y0, we obtain

V (y0) ≥ −H(y0,
2
ε
(x0 − y0)− αm < y0 >

m−2 y0). (42)

Subtracting (42) from (41), we have

W (x0)− V (y0) ≤ H(y0,
2
ε
(x0 − y0)− αm < y0 >

m−2 y0)−H(x0,
2
ε
(x0 − y0) + αm < x0 >

m−2 x0).

From (39)

H(y0,
2
ε
(x0 − y0)− αm < y0 >

m−2 y0) ≤ H(y0,
2
ε
(x0 − y0)) + αC0m < y0 >

m−1,

−H(x0,
2
ε
(x0 − y0) + αm < x0 >

m−2 x0) ≤ −H(x0,
2
ε
(x0 − y0)) + αC0m < x0 >

m−1,

and therefore

W (x0)− V (y0) ≤ H(y0,
2
ε
(x0 − y0))−H(x0,

2
ε
(x0 − y0)) + αC0m(< x0 >

m−1 + < y0 >
m−1)

≤ CRα(1 +
2
ε
|x0 − y0|)|x0 − y0|+ αC0m(< x0 >

m−1 + < y0 >
m−1)

where the last inequality follows from (38).

Now fix α, construct a sequence {εk} with limk→∞ εk = 0. We denote the corresponding
maximizers of Φ as (x0k, y0k). Since ∀k, (x0k, y0k) ∈ B(0, Rα), by extracting a subsequence if
necessary, we get

lim
k→∞

(x0k, y0k) → (xα, yα) ∈ B(0, Rα). (43)

Also from (40), we have xα = yα. For each εk, from Φ(x, x) ≤ Φ(x0, y0),

W (x)− V (x)− 2α < x >m ≤ W (x0)− V (y0)− 1
εk
|x0 − y0|2 − α(< x0 >

m + < y0 >
m)

≤ W (x0)− V (y0)− α(< x0 >
m + < y0 >

m)

≤ CRα(1 +
2
ε
|x0 − y0|)|x0 − y0|+ αC0m(< x0 >

m−1 + < y0 >
m−1)

−α(< x0 >
m + < y0 >

m)
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and letting k →∞,using (40)

W (x)− V (x) ≤ 2α(C0m < xα >
m−1 − < xα >

m) + 2α < x >m .

Since Cm < xα >
m−1 − < xα >

m≤ C ′′ for some C ′′ > 0,

W (x)− V (x) ≤ 2α(C ′′+ < x >m).

Letting α→ 0, we get
W (x)− V (x) ≤ 0, ∀x,

Since W and V are symmetric, we also have V (x)−W (x) ≤ 0 ∀x. Thus we get W (x) = V (x), ∀x.
�

5 Discrete Approximation Schemes

The approximation will be accomplished in two steps. First we approximate the continuous time op-
timal control problem by a discrete time problem, derive the discrete Bellman equation (DBE), and
show the value function of the disrete problem converges to that of the continuous problem locally
uniformly. Following [2], we call this step “semi-discrete” approximation. Then we indicate how
to further discretize (DBE) in the spatial variable, which is called “fully-discrete” approximation.
The approaches we take here follows closely those in [2](Chapter VI and Appendix A).

5.1 Semi-discrete approximation

Consider a discrete time optimal control problem obtained by discretizing the original continuous
time one with time step h ∈ (0, 1

λ). The dynamics is given by

x[n] = x[n− 1] + hf̃(x[n− 1], u[n − 1], d[n − 1]), x[0] = x, (44)

and the cost is given by

Jh(x, α[·]) =
∞∑

n=0

hl(x[n], u[n])(1 − λh)n, (45)

where α[·] = {d[·], u[·]} is the control. The value function is defined to be

Vh(x) = inf
α[·]

Jh(x, α[·]). (46)

The following lemma is analogous to Lemma 6.

Lemma 12: Let x1[·], x2[·] be solutions to (44) under some admissible control α[·] = {d[·], u[·]}
with initial condition x1, x2 respectively. Then

1.
|x1[n]− x2[n]| ≤ (1 + hL0)n|x1 − x2|; (47)
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2.
|x1[n]| ≤ (1 + hL0)n|x1|+ C((1 + hL0)n − 1))

L0
, (48)

where C = maxd |f̃(0, u0, d)|.

It’s not hard to show Vh(·) has the following property:

Lemma 13: Vh(·) ∈ P(R2), and the coefficient C in defining P(R2) can be made independent
of h.

Remark: Lemma 13 implies that Vh(·) is locally bounded and locally Lipshitz continuous.

Following standard arguments, one can show Vh(·) satisfies the discrete Bellman equation
(DBE):

Theorem 14: Vh(·) satisfies:

(DBE) Vh(x) = min{ inf
u∈U−

{(1−λh)Vh(x+huf−(x))+hl(x, u)}, inf
u∈U+

{(1−λh)Vh(x+huf+(x))+hl(x, u)}}.
(49)

It’s of interest to know whether (49) characterizes the value function Vh(·). Unlike in [2](Chapter
VI), where a bounded value function was considered, we have Vh(·) unbounded. But it turns out
that with a little bit additional assumption, (49) has a unique solution.

Proposition 15: Assume (A1) and (A3). If 2(1−λh)√
C2

0+4−C0
< 1, then there exists unique solution

in P(R2) to (49), where

C0 = |uc|
∣∣∣∣ 1
Cf

∣∣∣∣ .
Proof. Let Ṽh(x) = Vh(x) < x >−m,m > 2, where < x >= (1 + |x|2)1/2. Since Vh ∈ P(R2), Ṽh is
bounded. In terms of Ṽh, (49) is rewritten as

Ṽh(x) = min{ inf
u∈U−

{(1 − λh)Ṽh(x+ hf̃−(x, u))(
< x+ hf̃−(x, u) >

< x >
)m + hl(x, u) < x >−m},

inf
u∈U+

{(1 − λh))Ṽh(x+ hf̃+(x, u))(
< x+ hf̃+(x, u) >

< x >
)m + hl(x, u) < x >−m}} (50)

=: (G(Ṽh))(x).

It suffices to show (50) has a unique solution. It’s clear that the operator G(·) maps any W̃ ∈
BC(R2) into BC(R2), where BC(R2) denotes the set of bounded continuous functions. Now take
Ṽ , W̃ ∈BC(R2). For any x, without loss of generality, assume u1 ∈ U− achieves the minimum in
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G(Ṽ )(x). Then

G(W̃ )(x) −G(Ṽ )(x) ≤ (1− λh)(
< x+ hf̃−(x, u1) >

< x >
)mW̃ (x+ hf̃−(x, u))

−(1− λh)(
< x+ hf̃−(x, u1) >

< x >
)mṼ (x+ hf̃−(x, u))

≤ (1− λh)(
< x+ hf̃−(x, u1) >

< x >
)m sup

x∈R
2
(W̃ − Ṽ )(x).

Using the boundness of f̃−, one can show that

(
< x+ hf̃−(x, u1) >

< x >
)m ≤ (

2√
C2

0 + 4− C0

)
m
2 .

Since we may choose m arbitrarily close to 2,

G(W̃ )(x)−G(Ṽ )(x) ≤ ρ sup
x∈R

2
|(W̃ − Ṽ )(x)|,

where ρ < 1. By symmetry, we have

G(Ṽ )(x) −G(W̃ )(x) ≤ ρ sup
x∈R

2
|(W̃ − Ṽ )(x)|.

Thus ‖ G(W ) − G(V ) ‖∞≤ ρ ‖ W − V ‖∞. Since BC(R2) is a Banach space, by Contraction
Mapping Principle, there exists a unique solution to (50) in BC(R2). �

The following theorem asserts that Vh(·) converges to V (·) as h → 0. The proof can be found
in [2](Chapter VI)(with minor modification).

Theorem 16[2]: Under assumptions which guarantee uniqueness of (HJB) and (DBE),

sup
x∈K

|Vh(x)− V (x)| → 0 as h→ 0, (51)

for every compact K⊂ R
2, where Vh(·) and V (·) are the unique solutions to (DBE) and (HJB)

respectively.

Remarks:

• Theorem 16 also serves as a proof of existence of a solution to (HJB).

• In solving (49), one obtains the optimal control α∗h[·] for the discrete time problem. A sub-
optimal control for the continuous time problem is αh(·) defined by αh(t) ≡ α∗h[k], ∀t ∈
[kh, (k + 1)h), k ∈ N. As h→ 0, one can show J(x, αh(·)) → V (x).
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5.2 Fully-discrete approximation

Theoretically the solution to (49) can be obtained by first computingṼ (·) via successive approxima-
tion and then transforming back to V (·). An approximation scheme for solving (DBE) is described
in [2](Appendix A). It was shown there that when space discretization gets finer and finer, the
solution obtained via solving a finite system of equations converges to Vh(·).

6 Conclusions and Future Work

In this report, we have studied control of a magnetostrictive actuator, taking the infinite horizon
optimal control problem as an example. We characterized the value function as the (unique) solution
of a Hamilton-Jacobi-Bellman equation of a hybrid form. And we pointed out how to solve the
(HJB) and obtain a suboptimal control by discrete time approximation.

Future work includes extension of this approach to other control problems of practical interests,
which are listed below:

• Finite Horizon Control Problems. Such problems arise, for instance, in tracking control
of the actuator.

• Problems with State-Space Constraints. The state-space constraints come from physics,
as well as limitation on the operating range of the input current.

• Time-Optimal Control Problem. An important example of this is fast positioning.

• H∞ Control Problem. To account for exogenous disturbances and unmodeled dynamics,
we can introduce a noise term into the model and investigate robust control of the actuator
using H∞ control theory.

For each of the problems discussed above, we need to study the exact form of the Hamilton-
Jacobi equation (together with its initial/boundary conditions) satisfied by the value function, the
numerical solution of the equation and the controller synthesis method.

A Proof of Lemma 1

Proof.
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∂L(z)
∂z

=
1
z2
− csch2(z)

=
1
z2
− 1

(ez−e−z

2 )2

=
1
z2
− 1

(z + z3

3! + z5

5! + · · · )2 . (52)

Therefore
∂L(z)
∂z

> 0, ∀z 6= 0. (53)

Further manipulation on (52) yields

∂L(z)
∂z

=
(2 + z2

3! + z4

5! + · · · )( 1
3! + z2

5! + · · · )
(1 + z2

3! + z4

5! + · · · )2 ,

from which we obtain
∂L
∂z

(0) =
1
3
. (55)

(56)

Combining (53) and (55) we have
∂L(z)
∂z

> 0. (57)

Since in addition,
lim

z→∞L(z) = 1, lim
z→−∞L(z) = −1,

we have (13).

To prove ∂L(z)
∂z ≤ 1

3 , it suffices to show

∂2L(z)
∂z2

> 0 ∀z < 0,

∂2L(z)
∂z2

< 0 ∀z > 0.

But

∂2L(z)
∂z2

=
8(ez + e−z)
(ez − e−z)3

− 2
z3

= 2
(1 + z2

2! + z4

4! + · · · )− (1 + z2

3! + z4

5! + · · · )3
z3(1 + z2

3! + z4

5! + · · · )3 , (59)

so we need only to show that the numerator of (59) is always less than 0 ∀z 6= 0. We first note that
the coefficient of z2k, k > 1 in the second term is

3(
1

(2k + 1)!
+

1
(2k − 1)!3!

+ · · · ) > 3
1

(2k − 1)!3!

>
1

(2k)!
(
3(2k)

3!
)

>
1

(2k)!
,
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while 1
(2k)! is the coefficient of z2k in the first term. For k = 0, 1, the coefficients of both terms

cancel out. The proof is now complete. �
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